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Dataflow Models

n Systems are specified as directed graphs where:
r nodes represent computations (processes);
r arcs represent totally ordered sequences (streams) of data (tokens).
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Dataflow Models

n Systems are specified as directed graphs where:
r nodes represent computations (processes);
r arcs represent totally ordered sequences (streams) of data (tokens).

n Depending on their particular semantics, several models of computation 
based on dataflow have been defined:

r Kahn process networks
r Dataflow process networks
r Synchronous dataflow
r - - - - - - -

n Dataflow models are suitable for signal-processing algorithms:
r Code/decode, filter, compression, etc.
r Streams of periodic and regular data samples



Dataflow Models

Process p1( in int a, out int x, out int y) {...............
}

Process p2( in int a, out int x) {...............
}

Process p3( in int a, out int x) {...............
}

Process p4( in int a, in int b, out int x) {...............
}

channel int I, O, C1, C2, C3, C4; 
p1(I, C1, C2);
p2(C1, C3);
p3(C2, C4);
p4(C3, C4, O);

p3
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n The internal computation of a 
process can be specified in any 
programming language (e.g. C).

This is called the host language.
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Kahn Process Networks (KPN)

n Processes communicate by passing data tokens through unidirectional FIFO 
channels.

n Writes to the channel are non-blocking.

n Reads are blocking:
r the process is blocked until there is sufficient data in the channel



Kahn Process Networks (KPN)

n Processes communicate by passing data tokens through unidirectional FIFO 
channels.

n Writes to the channel are non-blocking.

n Reads are blocking:
r the process is blocked until there is sufficient data in the channel

A process that tries to read from an empty 
channel waits until data is available. It cannot 
ask whether data is available before reading 
and, for example, if there is no data, decide 
not to read that channel.

DETERMINISM
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Kahn Process Networks

n Kahn process networks are deterministic:

r For a given sequence of inputs, there is only one possible sequence of 
outputs (regardless, for example, how long time it takes for a certain 
computation or communication to finish).

Looking only at the specification (and not knowing anything about 
implementation) you can exactly derive the output sequence 
corresponding to a given input sequence.
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Kahn Process Networks

n More on read and write limitations

r A process cannot wait for data on more than one channel at a time

r Only a single process is allowed to read from a certain channel

n What if the output data has to be sent to more than one process?

r Data must be duplicated inside processes

n This limited model of computation implies:

r More modeling effort for complex systems

r Retained determinism!



Kahn Process Networks: an Example

KPN model of encoder for Motion JPEG (M-JPEG) video compression format:
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Kahn Process Networks: a Simpler Example
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop

p2

if sw then
k = a.receive();

else
k = b.receive(); 

end if;
x.send(k);
sw = !sw; 

end loop; }

channel int I, O, C1, C2, C3, C4; 
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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int k;
loop
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if k mod 2 = 0 then
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else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
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Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop
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if sw then
k = a.receive();

else
k = b.receive(); 

end if;
x.send(k); 
sw = !sw;

end loop; }

channel int I, O, C1, C2, C3, C4; 
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop



p2

if sw then
k = a.receive();

else
k = b.receive(); 

end if;
x.send(k); 
sw = !sw;

end loop; }

channel int I, O, C1, C2, C3, C4; 
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop



Oif sw then
k = a.receive();

else
k = b.receive(); 

end if;
x.send(k); 
sw = !sw;

end loop; }

channel int I, O, C1, C2, C3, C4; 
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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int k;

k = a.receive();

x.send(k);

y.send(k);

loop

end loop; }

Process p1( in int a, out int x, out int y) {

loop
if k mod 2 = 0 then 

else

end if; 
end loop; }

21
I

Process p2( in int a, out int x) { 
int k; C1

p1
C2

k = a.receive(); 
x.send(k);

Process p3(in int a, in int b, out int x) {

p2 

C3 8 5

p2
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int k; bool sw = true; 
loop

p3
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if sw then
k = a.receive();

else
k = b.receive(); 

end if;
x.send(k); 
sw = !sw;

end loop; }

8
channel int I, O, C1, C2, C3, C4; 
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
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x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop
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Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop
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if sw then
k = a.receive();

else
k = b.receive(); 

end if;
x.send(k); 
sw = !sw;

end loop; }
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop
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int k;

k = a.receive();

x.send(k);

loop

Process p1( in int a, out int x, out int y) {

loop
if k mod 2 = 0 then 

else
y.send(k); 

end if;
end loop; }

0

I
Process p2( in int a, out int x) { 
int k; C1

p1

8 5 C2
k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) {

p2 
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop
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channel int I, O, C1, C2, C3, C4; 
p1(I, C1, C2);
p2(C1, C3);

p2

8p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

end if;
x.send(k);
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Process p1( in int a, out int x, out int y) { 
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

end if;
x.send(k);
sw = !sw; 

end loop; }
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Process p1( in int a, out int x, out int y) { 
int k;
loop
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if k mod 2 = 0 then
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else

y.send(k); 
end if;

end loop; }
Process p2( in int a, out int x) { 
int k;
loop

k = a.receive(); 
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end loop; }
Process p3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop
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loop

Process p1( in int a, out int x, out int y) { 7
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k); 
end if;

end loop; }
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Process p2( in int a, out int x) { 
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k = a.receive(); 
x.send(k);

end loop; }
Process p3(in int a, in int b, out int x) {
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int k; bool sw = true; 
loop

p3
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Kahn Process Networks: 
Determinism

n For the same input sequence, the produced output sequence is always the 
same

n These factors entirely determine the outputs of the system:

r Processes

r The network

r Initial tokens

n Timing of the processes and channels do not affect the outputs of the 
system
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The Modified Network
Process q3(in int a, in int b, out int x) { 
int k; bool sw = true;
loop

if sw then
k = a.receive() on timeout(d) do 

sw = !sw;
continue;

else
k = b.receive() on timeout(d) do 

sw = !sw;
continue;

end if; 
x.send(k); 
sw = !sw;

end loop; }

n Consider q3 instead of p3:
r Process q3 first tries channel a 

or b, depending on sw, like in 
the previous version.

r But, instead of blocking, if 
nothing comes after a timeout d, 
q3 will switch to read a token 
from the other channel.

n With q3 we do not have a Kahn 
process network.

n The system is not deterministic.
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q3 
O
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The Modified Network

p2 p2

I

p1
C1 C2

C3 C4

21
5
4
8

With an implementation such 
that channel C1 is very fast 
and C2 is very slow.

11
q3 
O
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The Modified Network

q3

p2

I

p1

O

C1 C2

p2

C3 C4

11
21
5
4
8

With an implementation such 
that channel C1 is very fast 
and C2 is very slow.
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The Modified Network

q3

p2

I

p1

O

C1 C2

p2

C3 C4

4
11
21
8
5

11
21
5
4
8

With an implementation such 
that channel C1 is very fast 
and C2 is very slow.
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The Modified Network

q3

p2

I

p1

O

C1 C2

p2

C3 C4

4
11
21
8
5

11
21
5
4
8

p2

C1

p2

C3 C4

4
11
21
8

I 5

p1
C2

q3
O 4

8
11
21
5

With an implementation such 
that channel C1 is very fast 
and C2 is very slow.

With an implementation such 
that channel C1 is very slow 
and C2 is very fast.
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Scheduling of Kahn Process Networks

p1

I

p3
O

C1 C2

p21

C3

p22

C4

n Let us imagine we have to implement the 
system on a single processor architecture.

Let’s try the following static schedule:

p1 p21 p22 p3
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Scheduling of Kahn Process Networks

p1

I

p3
O

C1 C2

p21

C3

p22

C4

n Let us imagine we have to implement the 
system on a single processor architecture.

Let’s try the following static schedule:

p1 p21 p22 p3

The system will block!
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Scheduling of Kahn Process Networks

And all other schedules will block:

I

p1

p3
O

C1 C2

p21

C3

p22

C4

p1 p22 p21 p3
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Scheduling of Kahn Process Networks

And all other schedules will block:

I

p1

p3
O

C1 C2

p21

C3

p22

C4

p1 p22 p21 p3

p1 p21 p3 p22
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Scheduling of Kahn Process Networks

And all other schedules will block:

I

p1

p3
O

C1 C2

p21

C3

p22

C4

p1 p22 p21 p3

p1 p21 p3 p22

p1 p1 p21 p22 p3
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Scheduling of Kahn Process Networks

n Kahn process networks are dynamic dataflow models: their behavior is data 
dependent; depending on the input data one or the other process is activated.

n Kahn process networks cannot be scheduled statically Þ It is not possible to 
derive, at compile time, a sequence of process activations such that the 
system does not block under any circumstances.

Kahn process networks have to be scheduled dynamically Þ which process 
to activate at a certain moment has to be decided, during execution time, 
based on the current situation.

There is an overhead in implementing Kahn process networks.

57 of 98



Kahn Process Networks

n Another problem: memory overhead with buffers.
Potentially, it is possible that the memory need for buffers grows unlimited.

Possible approaches:
- For some applications and restrictions on inputs, FIFO bounds can be 
mathematically derived in design to avoid FIFO overflows
- FIFO bounds can be grown on demand
- Blocking writes can be used so that a process blocks if a FIFO is full (this 
deviates from the KPN semantics and may lead to deadlocks, which add 
further implementation issues)

n Kahn process networks are relatively strong in their expressive power but 
sometimes cannot be implemented efficiently.

Introduce more limitations so that you can get efficient implementations.
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Synchronous Dataflow Models

n Dataflow process networks are a particular case of Kahn process networks.
A particular kind of dataflow process networks, which can be efficiently 
implemented, are synchronous dataflow (SDF) networks.

n Synchronous dataflow networks are Kahn process networks with restriction:
r At each activation (firing) a process produces and consumes a fixed 

number of tokens on each of its outgoing and incoming channels.
r For a process to fire, it must have at least as many tokens on its input 

channels as it has to consume.
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Synchronous Dataflow Models

n Synchronous dataflow models are less expressive than Kahn process 
networks:

r With SDF models it is impossible to express conditional firing, where a 
process’ firing depends on a certain condition; SDF are static dataflow 
models.
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Synchronous Dataflow Models

n Synchronous dataflow models are less expressive than Kahn process 
networks:

r With SDF models it is impossible to express conditional firing, where a 
process’ firing depends on a certain condition; SDF are static dataflow 
models.

n For the above reduced expressiveness, however, we get two nice features of 
SDF models:

1. Possibility to produce static schedules.
2. Limited and predictable amount of needed buffer space.



Synchronous Dataflow Models

A
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n Arcs are marked with the number of 
tokens produced or consumed.

n This is a simple “single-rate” system: 
every process is activated one single 
time before the system returns to its 
initial state.



Synchronous Dataflow Models

A

1

1
1

C 
1

1
1
B 
1
1 1

D
1

n Arcs are marked with the number of 
tokens produced or consumed.

n This is a simple “single-rate” system: 
every process is activated one single 
time before the system returns to its 
initial state.

Possible static schedule:

A B C D

63 of 98



Synchronous Dataflow Models

Our example from Lecture 1:

T8
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T1 T2 T4 T3 T5 T6 T7 T8

A static schedule:

1

T7
1

1

1
T4
1

1
T2 
1

1 T1 1

1
1 T3 1

1

1

T5 T6
1 1

1

1



Deriving a static schedule for SDF

2 C
2
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1
2

2 D

A 2

1

4 B 1
2

n For a correct synchronous dataflow network 
there exists a sequence of firings which 
returns the network in its original state.

This sequence represents a static schedule 
which has to be repeated in a cycle.

n The schedule is such that a finite amount of 
memory is required (no infinite buffers)

Problem
How to derive such a cyclic schedule?



Deriving a static schedule for SDF

2 C
2
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1
2

D

A 2

1
2

4 B 1
2

n Along the periodic sequence of firing, on 
each arc the same number of tokens has to be 
produced and consumed.



Deriving a static schedule for SDF

Balance equations: 

2a - 4b = 0
b - 2c = 0 

2c -  d = 0 
2b - 2d = 0
2d -  a = 0

2 C
2
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n Along the periodic sequence of firing, on 
each arc the same number of tokens has to be 
produced and consumed.

a, b, c, d: the number of firings, during a 
period, for process A, B, C, D.



Deriving a static schedule for SDF

Balance equations: 

2a - 4b = 0
b - 2c = 0 

2c -  d = 0 
2b - 2d = 0
2d -  a = 0

2 C
2

1
2

D

A 2

1
2

4 B 1
2

n Along the periodic sequence of firing, on 
each arc the same number of tokens has to be 
produced and consumed.

a, b, c, d: the number of firings, during a 
period, for process A, B, C, D.

a 
b 
c 
d

= 0

2 –4 0 0
0 1 –2 0
0 0 2 –1
0 2 0 –2
–1 0 0 2

69 of 98



Deriving a static schedule for SDF

Balance equations: 

2a - 4b = 0
b - 2c = 0 

2c -  d = 0 
2b - 2d = 0
2d -  a = 0

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0

a 
b 
c 
d

= 0

2 –4 0 0
0 1 –2 0
0 0 2 –1
0 2 0 –2
–1 0 0 2
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Deriving a static schedule for SDF

Balance equations: 

2a - 4b = 0
b - 2c = 0 

2c -  d = 0 
2b - 2d = 0
2d -  a = 0

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
topology matrix 
of the graph

a 
b 
c 
d

= 0

2 –4 0 0
0 1 –2 0
0 0 2 –1
0 2 0 –2
–1 0 0 2
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Deriving a static schedule for SDF

Balance equations: 

2a - 4b = 0
b - 2c = 0 

2c -  d = 0 
2b - 2d = 0
2d -  a = 0

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
topology matrix

a 
b 
c 
d

= 0

2 –4 0 0
0 1 –2 0
0 0 2 –1
0 2 0 –2
–1 0 0 2

of the graph firing vector
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Deriving a static schedule for SDF

Balance equations: 

2a - 4b = 0
b - 2c = 0 

2c -  d = 0 
2b - 2d = 0
2d -  a = 0

2 C
2

1
2

D

A 2

1
2

4 B 1
2

a 
b 
c 
d

= 0

2 –4 0 0
0 1 –2 0
0 0 2 –1
0 2 0 –2
–1 0 0 2

of the graph firing vector

For a given SDF network (graph) we get equation:

Gq = 0
vector of zeros

topology matrix
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Deriving a static schedule for SDF

Balance equations: 

2a - 4b = 0
b - 2c = 0 

2c -  d = 0 
2b - 2d = 0
2d -  a = 0

2 C
2

1
2

D

A 2

1
2

4 B 1
2

n If there is no q¹0 which satisfies the equation 
above Þ there is no static schedule (there is a 
rate inconsistency between processes).

a 
b 
c 
d

= 0

2 –4 0 0
0 1 –2 0
0 0 2 –1
0 2 0 –2
–1 0 0 2

of the graph firing vector

For a given SDF network (graph) we get equation:

Gq = 0
vector of zeros

topology matrix
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Deriving a static schedule for SDF

Balance equations: 

2a - 4b = 0
b - 2c = 0 

2c -  d = 0 
2b - 2d = 0
2d -  a = 0

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

a 
b 
c 
d

= 0

2 –4 0 0
0 1 –2 0
0 0 2 –1
0 2 0 –2
–1 0 0 2
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A A B A A B C D D
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A A B A A B C D D

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D ® A.
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D ® A.
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A A

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D ® A.
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A A B

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D ® A.
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A A B A

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D ® A.
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A A B A A

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D ® A.
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A A B A A B

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D ® A.
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A A B A A B C

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D ® A.
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A A B A A B C D

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D ® A.
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Deriving a static schedule for SDF

A possible schedule:

2 C
2

1
2

D

A 2

1
2

4 B 1
2

For a given SDF network (graph) we get equation:

Gq = 0
n Among possible solutions for vector q, we are 

interested in the smallest positive integer 
vector (smallest sum of the elements).
For our SDF graph, this solution is: 
a=4, b=2, c=1, d=2.
a, b, c, d indicate how often each task is 
activated during one period.

A A B A A B C D D

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D ® A.
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Deriving a static schedule for SDF

Solution: a=3, b=2, c=1.

B3 2
4

3 C
2
A 1

2 –3 0 a
0 2 –4 b
1 0 –3 c

= 0
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Deriving a static schedule for SDF

Solution: a=3, b=2, c=1.

Possible schedule:

B3 2
4

3 C
2
A 1

A A A B B C

2 –3 0 a
0 2 –4 b
1 0 –3 c

= 0
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Deriving a static schedule for SDF

A 
B
A

B 0
C 0
C 0

B3 2
4

3 C
2
A 1
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Deriving a static schedule for SDF

A
B 
A

A
B 0 2
C 0 0
C 0 1

B

C

3 2
4

3

2
A 1

A
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Deriving a static schedule for SDF

A
B 
A

A A
B 0 2 4
C 0 0 0
C 0 1 2

B

C

3 2
4

3

2
A 1

A A
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Deriving a static schedule for SDF

A
B 
A

A A A
B 0 2 4 6
C 0 0 0 0
C 0 1 2 3

B

C

3 2
4

3

2
A 1

A A A
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Deriving a static schedule for SDF

A
B 
A

A A A B
B 0 2 4 6 3
C 0 0 0 0 2
C 0 1 2 3 3

B

C

3 2
4

3

2
A 1

A A A B
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Deriving a static schedule for SDF

A
B 
A

A A A B B
B 0 2 4 6 3 0
C 0 0 0 0 2 4
C 0 1 2 3 3 3

B

C

3 2
4

3

2
A 1

A A A B B
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Deriving a static schedule for SDF

A
B 
A

A A A B B C
B 0 2 4 6 3 0 0
C 0 0 0 0 2 4 0
C 0 1 2 3 3 3 0

B

C

3 2
4

3

2
A 1

A A A B B C
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Deriving a static schedule for SDF

A
B 
A

A A A B B C
B 0 2 4 6 3 0 0
C 0 0 0 0 2 4 0
C 0 1 2 3 3 3 0

B

C

3 2
4

3

2
A 1

A A A B B C
Buffer space needed: 
A-B: 6; B-C: 4; A-C: 3;
Total: 13 if buffers not shared
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Deriving a static schedule for SDF

AB
BC

2
A A A B B C

004 6 3
0 040 0 2
1 2 3 3 3 0

0
0

AC 0
total 0 3 6 9 8 7 0

B

C

3 2
4

3

2
A 1

A A A B B C
Buffer space needed: 
A-B: 6; B-C: 4; A-C: 3;
Total: 13 if buffers not shared 

9 if buffers shared
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Deriving a static schedule for SDF

Solution: a=3, b=2, c=1.

Possible schedule:

Another schedule:

B3 2
4

3 C
2
A 1

A A A B B C

A A B A B C

Buffer space needed: 
A-B: 6; B-C: 4; A-C: 3;
Total: 13 if buffers not shared 

9 if buffers shared

Buffer space needed: 
A-B: 4; B-C: 4; A-C: 3;
Total: 11 if buffers not shared 

8 if buffers shared

2 –3 0 a
0 2 –4 b
1 0 –3 c

= 0
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Deriving a static schedule for SDF

n With this example we have a rate inconsistency Þ No static, periodic 
schedule with finite buffers is possible.

n There is no solution for the equation, different from a=b=c=0.

n It is easy to observe that on the arc A ® C, tokens continuously accumulate.

1 B
1

11 C

A 1

2
1 –1 0 a
0 1 –1 b
2 0 –1 c

= 0

99 of 98



Treatment of Time

n Dataflow systems are asynchronous concurrent.

r Events can happen at any time.
r There exists a a partial order of events:

B

D

100 of 
98

A

C

- Producing a token by A strictly precedes 
consuming a token by B and C.

- There is no order between consuming a 
 token by B and consuming a token by C.


